- 高一物理必修一电子版
高一物理必修一电子版教材包括以下内容:
第一章 运动的描述:包括质点、参考系、坐标系、时间和时刻、运动学物理量等。
第二章 匀变速直线运动的研究:包括匀变速直线运动规律的探究、自由落体运动、匀变速直线运动的应用举例等。
第三章 相互作用:包括重力、弹力、摩擦力、其他力、受力分析、力的合成等。
第四章 牛顿运动定律:包括牛顿第一定律、牛顿第二定律、牛顿第三定律等。
此外,电子版教材还提供了相关练习题和知识点总结,以帮助读者更好地掌握高一物理知识。
以上内容仅供参考,如需获取更多信息,建议您通过正规渠道进行查询。
相关例题:
题目:自由下落的物体在第n秒内的位移比$h_{n - 1}$为多少?
【原文】
题目:一物体做自由落体运动,已知在第n秒内的位移是$h_{n}$,求第n - 1秒内的位移。
【解析】
根据自由落体运动的规律,物体在第n秒内的位移为:
$h_{n} = \frac{1}{2}gt^{2} - \frac{1}{2}g(t - 1)^{2}$
其中$t$为总时间,$g$为重力加速度。
将上式代入已知条件中,得到:
$h_{n} = \frac{1}{2}g(n^{2} - n) - \frac{1}{2}g(n^{2} - n - 1)$
将上式化简得到:
$h_{n} = \frac{g}{2}(n^{2} - n - (n - 1)^{2})$
所以第$n - 1$秒内的位移为:
$h_{n - 1} = \frac{g}{2}(n^{2} - n)$
所以第$n$秒内的位移比第$n - 1$秒内的位移多$\frac{g}{2}(n^{2} - n + 1)$。
【答案】
第$n$秒内的位移比第$n - 1$秒内的位移多$\frac{g}{2}(n^{2} - n + 1)$米。
【练习】
假设一个物体从高为$H$的塔顶自由下落,已知它在最后$0.5s$内的位移是塔高的$\frac{3}{8}$,求塔高。
【解析】
根据上述公式,物体在最后$0.5s$内的位移为:
$h_{0.5} = \frac{1}{2}g(t_{0.5})^{2} - \frac{3}{8}H = \frac{3}{8}H$
其中$t_{0.5}$为最后$0.5s$的时间。
将上式代入总时间公式中,得到:
$\frac{3}{8}H = \frac{g}{2}(t_{0.5})^{2} - \frac{g}{2}(t_{0.5} + 0.5)^{2}$
解得总时间为:$t = \sqrt{\frac{8H}{3}}$
所以塔高为:$H = \frac{4}{3}\lbrack\frac{g}{2}(t)^{2} - \frac{g}{2}(t + 0.5)^{2}\rbrack = \frac{4}{3}\lbrack\frac{g}{2}(t)^{2} - \frac{5g}{8}(t + 0.5)^{2}\rbrack$。
以上是小编为您整理的高一物理必修一电子版,更多2024高一物理必修一电子版及物理学习资料源请关注物理资源网http://www.wuliok.com
